Bitcoin - So funktioniert das Geld aus dem Internet ...

Part 1. What is a Blockchain?

I really like the following definition of a blockchain from Don & Alex Tapscott, authors of Blockchain Revolution (2016).
“The blockchain is an incorruptible digital ledger of economic transactions that can be programmed to record not just financial transactions but virtually everything of value.
 
If the above definition is a bit much to digest all at once, my own basic definition of a blockchain is:
"A chronological public ledger of all past transactions that is VERY difficult to tamper with."
 
What these definitions mean, and what they foreshadow to us, are that the acts of: buying melons at a local farmers market, selling your home, registering your marriage, voting, borrowing money and paying it back, etc, are all possible TODAY by using (and trusting the tech behind) a blockchain.
 
How is this possible? It's actually a fairly simple explanation...When committing information into a blockchain, 7 Simple steps are taken. They are: 1. Request, 2. Broadcast, 3. Validate, 4. Verify, 5. Add to Block, 6. Add to Blockchain, 7. Completion
 
1. Request. Someone decides to Request a transaction. Matt wants to send Corrinne 1 Bitcoin.
 
2. Broadcast. The requested transaction is broadcast by Matt's computer, "HEY EVERYONE! Help me send 1 Bitcoin to Corrinne, here's the necessary info." Matt sends his Broadcast to everyone's computer connected to the blockchain through a Peer-to-Peer network. In this case Matt is only broadcasting to computers on the Bitcoin blockchain, also known as "Broadcasting to the Bitcoin Nodes."
 
3. Validate. The computer Matt is using to Broadcast puts information in his Request that is required by the Bitcoin Nodes before they can Validate his Request. Matt's computer has already done a Validation of his Request before Broadcasting, but the Bitcoin Nodes decide if he has followed the Rules for a Transaction when he self-validated. The Bitcoin Nodes re-check that Matt's Digital Signature is legitimate, and based off of his prior transactions, re-check that he has 1 Bitcoin to send. If Matt's Digital Signature is legitimate, and his Bitcoin address holds at least 1 Bitcoin, and Matt has followed the Rules for a Transaction, the Bitcoin Nodes consider his Request to be Valid.
  3a. Digital Signature definition: Providing the same function as signing a check, a Digital Signature mathematically proves the signee is a known sender (Authentication), that the sender cannot deny having sent the message (Non-Repudiation), and that the message was not altered in transit (Integrity). The Bitcoin blockchain uses your private key, your public key, and some fancy math to accomplish this.
  3b. Bitcoin Nodes definition: Computers running a program that connects them to the Bitcoin blockchain. In the use case of Validation they are only looking for transactions authorized by Matt's unique Digital Signature. However, these computers can also access the blockchain, create new Blocks, chain new Blocks onto the blockchain, and can look at any previous transactions. If Matt was bad and didn't have 1 Bitcoin at his address, the Bitcoin Nodes would know and his Request would stop here.
 
4. Verify. A transaction is Verified after a certain threshold of Bitcoin Nodes is reached who view Matt's Request as Valid. Verification can also be thought of as "The required amount of Trust between Matt and a single Bitcoin Node". As the number of Bitcoin Nodes viewing Matt's Request to be Valid increases, the amount of trust for Matt also increases. As time goes on and Matt's Request is repeatedly shown to be Valid, the chance that a single Bitcoin Node will believe Matt's Request is worth the effort (Time x Electricity) of being added into a new Block continues to go up until, finally, a single Bitcoin Node somewhere decides that Matt is trustworthy, and adds his Requested transaction into a new Block.
 
5. Add to a new Block. Once Matt's Request for a transaction is Verified, his Request is combined with other Verified transactions by a single Bitcoin Node to create a Block. A Block is merely a list of Verified transactions. Each Block holds a finite number of transactions before it is considered "full", after which a new Block must be created.
 
6. Add to the Blockchain. After a Block is filled to capacity, it must be added to the Blockchain. The chaining together of Blocks, in a way which is permanent and unalterable (under almost all conditions) is where Blockchain gets its name. This process involves SHA-256 hashing, Merkle trees, and other actions that require a lengthy explanation. The following is a simplified version of the process:  
Bitcoin Nodes race each other to solve a cryptographic puzzle that uses a LOT of computer resources (Time x Electricty). Whichever Bitcoin Node solves the puzzle first wins the right to chain the Block they created onto the existing Blockchain. Other Bitcoin Nodes will Verify (similar to Validating Matt's Request) that when the winning Bitcoin Node created this new Block, the Rules for creating a new Block were followed. If the Rules were followed, the new Block is mathematically chained onto the most recent Block to also meet this same criteria.
 
7. Transaction Complete! Matt's Request has now been irreversibly recorded into the Blockchain of Bitcoin. Corrinne's computer can now access the Blockchain and see this Completed transaction. In fact, every single person looking at the Bitcoin Blockchain can see that Matt now has 1 less Bitcoin and that Corrinne has 1 additional Bitcoin.
 
** This image has a visual explanation for the above outline. hold CTRL + scroll up on mouse wheel to zoom
 
A parting thought: I would be remiss to not mention that the process of Block creation and Block chaining is where this technology shows us how novel it truly is. Currently, the electricity consumed by those processes is more than N. Korea and quite a few small countries. Every day folks are finding newer, faster, and more efficient ways of bending this technology to benefit us all. It is an exciting time to be a part of what I believe will be another technological revolution. The daily lives of people the globe over will be significantly impacted by whatever we end up doing with blockchain technology.
 
Thanks for reading, and an extra thank you for seriously wanting to learn more about Blockchain Technology! Please comment below for further explanations, to get an answer on any questions you have, or just to correct me if you wanna be that person. Stay tuned for Parts 2-4.  
~Matt  
www.DenverCryptoGroup.com
submitted by artlimber to denvercryptogroup [link] [comments]

The DEFINITIVE GUIDE to the BEST BITCOIN CORE FULL NODE, LND NODE, ELECTRUM SERVER and a lot of stuff all in one, and all scripted!!! Open source and free for almost all the features!

After some year playing with full bitcoin core nodes and lightning network nodes, starting times ago with a project called raspibolt (that teach me a lot), i can tell you to have found an awesome project that is ok for the beginner and for the professional too.
I challenge all of you to find another product (commercial too) with all of these functionality and starting from 0$. It calls myNode (this is a screenshot of the app https://ibb.co/n7KDmkx).
I discovered it by chance reading a post from the main developer here on reddit, and I wanted to discover this fantastic software to all bitcoin and tiny hardware enthusiasts like the raspberry pi that want have at home a swiss army knife :) .
Think of an automated script that takes care of configuring everything without you having to do anything. Does it seem strange to you? Try this app!
If you want more informations, please check the website https://www.mynodebtc.com and the telegram official channel with more than 150 guys happy to have discover this awesome application -> https://t.me/mynode_btc
--------------------------------
best hardware to buy: (https://www.mynodebtc.com/download)
- raspberry pi 4 with 4gb of ram
- power cable
- hdd or ssd of 1tb
- hdd or ssd adapter to connect to usb3 of raspberry pi
- micro sd of at least 16 gb
--------------------------------
best bitcoin full node software
- mynode - www.mynodebtc.com
--------------------------------
some characteristic/functionality:
- open source
- free for basic stuff
- github - https://github.com/mynodebtc/mynode
- tor enabled by default for bitcoin core and lnd
- vpn
- full bitcoin node
- lightning wallet (lnd)
- simple ui / web interface (screenshot of last release: https://ibb.co/n7KDmkx)
- bitcoin explorer
- electrum server - btc light wallet server
- ride the lightning - lightning wallet
- lnd hub - lightning wallet server
- bitcoin cli
- quicksync - quickly sync bitcoin blockchain
- lnd connect - generate qr codes for connecting wallets
- ln channel backup
- lnd manage cli tool

and a lot of stuff will be added in future like..
- joinmarket
- btcpay server
- liquid sidechain (blockstream's elements)
- samourai dojo (whirlpool)
- blockstream satellite cli
--------------------------------
steps to use it (https://www.mynodebtc.com/download)
0 - collect hardware
1 - download image from site
2 - flash image
3 - boot device
4 - enjoy
--------------------------------
submitted by CAPTIVE_AMIGA to Bitcoin [link] [comments]

Completed my Bitcoin Full Node + Lightning Node on Raspberry Pi, definitely the most fun I've had with anything Bitcoin related (Link to guide in comments)

Completed my Bitcoin Full Node + Lightning Node on Raspberry Pi, definitely the most fun I've had with anything Bitcoin related (Link to guide in comments) submitted by Zand_ to Bitcoin [link] [comments]

05-13 02:12 - 'Stripped by the definition of segwit nodes. / Whole blocks by the definition of the current Bitcoin protocol. / Base blocks (standard Bitcoin blocks, containing segwit transactions) + witnesses = segwit full blocks. / Let THA...' by /u/Natanael_L removed from /r/Bitcoin within 4-14min

'''
Stripped by the definition of segwit nodes.
Whole blocks by the definition of the current Bitcoin protocol.
Base blocks (standard Bitcoin blocks, containing segwit transactions) + witnesses = segwit full blocks.
Let THAT sink in.
Base blocks is the only thing old (current) nodes understand. Base blocks can only ever be 1 MB without a hardfork.
They're just saying that now there's additional data you need for full validation.
I don't even ever visit /btc. Keep strawmanning, like that could ever win you any argument. In fact I don't follow ANY cryptocurrency forums. I'm just still subscribed to /bitcoin since from back in ~2012 when people weren't so quick to attack everything that moves. By early 2016 it wasn't worth paying attention to it anymore, I just check in occasionally when I see it in my reddit frontpage. The fact that you insist on claiming I belong to that sub against all evidence just confirms that you're too lazy to confirm if your assumptions are true.
Again. Base blocks = that thing that hold transaction scripts and defines and claims UTXOs CAN NOT be more than 1 MB without a hardfork. Segwit ADDS a new datastructure. Segwit full blocks are base blocks + the witness structure.
The only reason you believe there's flaws and contradictions in what I'm saying is because you don't understand it. You're ascribing opinions and thoughts to me that I never have expressed based on your false preconceptions. You're inserting axioms in my logic that don't belong there based on YOUR assumptions. You're doing the logical equivalent of telling somebody that their physics simulation based on relativity is wrong, because it doesn't match your results from newtonian physics. You're refusing to evaluate the problem from the correct assumptions.
I have literally NOT ONCE here changed stance. I have only changed wording.
I challenge you to prove me wrong by quoting and explaining my contradictions. I can already tell you you'll fail. The flaws only exist in your mind.
You're too desperate to cling onto your own worldview that you can't tolerate to be challenged. You refuse to acknowledge that you can be wrong, and automatically assume that others are stupid if they disagree. You are not trying to understand my arguments, you're reading them with colored lenses and searches for errors that aren't there.
Your desire for conflict is what's hurting Bitcoin, and you're part of the problem with its community.
'''
Context Link
Go1dfish undelete link
unreddit undelete link
Author: Natanael_L
submitted by removalbot to removalbot [link] [comments]

Completed my Bitcoin Full Node + Lightning Node on Raspberry Pi, definitely the most fun I've had with anything Bitcoin related (Link to guide in comments) /r/Bitcoin

Completed my Bitcoin Full Node + Lightning Node on Raspberry Pi, definitely the most fun I've had with anything Bitcoin related (Link to guide in comments) /Bitcoin submitted by ABitcoinAllBot to BitcoinAll [link] [comments]

Ultimate glossary of crypto currency terms, acronyms and abbreviations

I thought it would be really cool to have an ultimate guide for those new to crypto currencies and the terms used. I made this mostly for beginner’s and veterans alike. I’m not sure how much use you will get out of this. Stuff gets lost on Reddit quite easily so I hope this finds its way to you. Included in this list, I have included most of the terms used in crypto-communities. I have compiled this list from a multitude of sources. The list is in alphabetical order and may include some words/terms not exclusive to the crypto world but may be helpful regardless.
2FA
Two factor authentication. I highly advise that you use it.
51% Attack:
A situation where a single malicious individual or group gains control of more than half of a cryptocurrency network’s computing power. Theoretically, it could allow perpetrators to manipulate the system and spend the same coin multiple times, stop other users from completing blocks and make conflicting transactions to a chain that could harm the network.
Address (or Addy):
A unique string of numbers and letters (both upper and lower case) used to send, receive or store cryptocurrency on the network. It is also the public key in a pair of keys needed to sign a digital transaction. Addresses can be shared publicly as a text or in the form of a scannable QR code. They differ between cryptocurrencies. You can’t send Bitcoin to an Ethereum address, for example.
Altcoin (alternative coin): Any digital currency other than Bitcoin. These other currencies are alternatives to Bitcoin regarding features and functionalities (e.g. faster confirmation time, lower price, improved mining algorithm, higher total coin supply). There are hundreds of altcoins, including Ether, Ripple, Litecoin and many many others.
AIRDROP:
An event where the investors/participants are able to receive free tokens or coins into their digital wallet.
AML: Defines Anti-Money Laundering laws**.**
ARBITRAGE:
Getting risk-free profits by trading (simultaneous buying and selling of the cryptocurrency) on two different exchanges which have different prices for the same asset.
Ashdraked:
Being Ashdraked is essentially a more detailed version of being Zhoutonged. It is when you lose all of your invested capital, but you do so specifically by shorting Bitcoin. The expression “Ashdraked” comes from a story of a Romanian cryptocurrency investor who insisted upon shorting BTC, as he had done so successfully in the past. When the price of BTC rose from USD 300 to USD 500, the Romanian investor lost all of his money.
ATH (All Time High):
The highest price ever achieved by a cryptocurrency in its entire history. Alternatively, ATL is all time low
Bearish:
A tendency of prices to fall; a pessimistic expectation that the value of a coin is going to drop.
Bear trap:
A manipulation of a stock or commodity by investors.
Bitcoin:
The very first, and the highest ever valued, mass-market open source and decentralized cryptocurrency and digital payment system that runs on a worldwide peer to peer network. It operates independently of any centralized authorities
Bitconnect:
One of the biggest scams in the crypto world. it was made popular in the meme world by screaming idiot Carlos Matos, who infamously proclaimed," hey hey heeeey” and “what's a what's a what's up wasssssssssuuuuuuuuuuuuup, BitConneeeeeeeeeeeeeeeeeeeeeeeect!”. He is now in the mentally ill meme hall of fame.
Block:
A package of permanently recorded data about transactions occurring every time period (typically about 10 minutes) on the blockchain network. Once a record has been completed and verified, it goes into a blockchain and gives way to the next block. Each block also contains a complex mathematical puzzle with a unique answer, without which new blocks can’t be added to the chain.
Blockchain:
An unchangeable digital record of all transactions ever made in a particular cryptocurrency and shared across thousands of computers worldwide. It has no central authority governing it. Records, or blocks, are chained to each other using a cryptographic signature. They are stored publicly and chronologically, from the genesis block to the latest block, hence the term blockchain. Anyone can have access to the database and yet it remains incredibly difficult to hack.
Bullish:
A tendency of prices to rise; an optimistic expectation that a specific cryptocurrency will do well and its value is going to increase.
BTFD:
Buy the fucking dip. This advise was bestowed upon us by the gods themselves. It is the iron code to crypto enthusiasts.
Bull market:
A market that Cryptos are going up.
Consensus:
An agreement among blockchain participants on the validity of data. Consensus is reached when the majority of nodes on the network verify that the transaction is 100% valid.
Crypto bubble:
The instability of cryptocurrencies in terms of price value
Cryptocurrency:
A type of digital currency, secured by strong computer code (cryptography), that operates independently of any middlemen or central authoritie
Cryptography:
The art of converting sensitive data into a format unreadable for unauthorized users, which when decoded would result in a meaningful statement.
Cryptojacking:
The use of someone else’s device and profiting from its computational power to mine cryptocurrency without their knowledge and consent.
Crypto-Valhalla:
When HODLers(holders) eventually cash out they go to a place called crypto-Valhalla. The strong will be separated from the weak and the strong will then be given lambos.
DAO:
Decentralized Autonomous Organizations. It defines A blockchain technology inspired organization or corporation that exists and operates without human intervention.
Dapp (decentralized application):
An open-source application that runs and stores its data on a blockchain network (instead of a central server) to prevent a single failure point. This software is not controlled by the single body – information comes from people providing other people with data or computing power.
Decentralized:
A system with no fundamental control authority that governs the network. Instead, it is jointly managed by all users to the system.
Desktop wallet:
A wallet that stores the private keys on your computer, which allow the spending and management of your bitcoins.
DILDO:
Long red or green candles. This is a crypto signal that tells you that it is not favorable to trade at the moment. Found on candlestick charts.
Digital Signature:
An encrypted digital code attached to an electronic document to prove that the sender is who they say they are and confirm that a transaction is valid and should be accepted by the network.
Double Spending:
An attack on the blockchain where a malicious user manipulates the network by sending digital money to two different recipients at exactly the same time.
DYOR:
Means do your own research.
Encryption:
Converting data into code to protect it from unauthorized access, so that only the intended recipient(s) can decode it.
Eskrow:
the practice of having a third party act as an intermediary in a transaction. This third party holds the funds on and sends them off when the transaction is completed.
Ethereum:
Ethereum is an open source, public, blockchain-based platform that runs smart contracts and allows you to build dapps on it. Ethereum is fueled by the cryptocurrency Ether.
Exchange:
A platform (centralized or decentralized) for exchanging (trading) different forms of cryptocurrencies. These exchanges allow you to exchange cryptos for local currency. Some popular exchanges are Coinbase, Bittrex, Kraken and more.
Faucet:
A website which gives away free cryptocurrencies.
Fiat money:
Fiat currency is legal tender whose value is backed by the government that issued it, such as the US dollar or UK pound.
Fork:
A split in the blockchain, resulting in two separate branches, an original and a new alternate version of the cryptocurrency. As a single blockchain forks into two, they will both run simultaneously on different parts of the network. For example, Bitcoin Cash is a Bitcoin fork.
FOMO:
Fear of missing out.
Frictionless:
A system is frictionless when there are zero transaction costs or trading retraints.
FUD:
Fear, Uncertainty and Doubt regarding the crypto market.
Gas:
A fee paid to run transactions, dapps and smart contracts on Ethereum.
Halving:
A 50% decrease in block reward after the mining of a pre-specified number of blocks. Every 4 years, the “reward” for successfully mining a block of bitcoin is reduced by half. This is referred to as “Halving”.
Hardware wallet:
Physical wallet devices that can securely store cryptocurrency maximally. Some examples are Ledger Nano S**,** Digital Bitbox and more**.**
Hash:
The process that takes input data of varying sizes, performs an operation on it and converts it into a fixed size output. It cannot be reversed.
Hashing:
The process by which you mine bitcoin or similar cryptocurrency, by trying to solve the mathematical problem within it, using cryptographic hash functions.
HODL:
A Bitcoin enthusiast once accidentally misspelled the word HOLD and it is now part of the bitcoin legend. It can also mean hold on for dear life.
ICO (Initial Coin Offering):
A blockchain-based fundraising mechanism, or a public crowd sale of a new digital coin, used to raise capital from supporters for an early stage crypto venture. Beware of these as there have been quite a few scams in the past.
John mcAfee:
A man who will one day eat his balls on live television for falsely predicting bitcoin going to 100k. He has also become a small meme within the crypto community for his outlandish claims.
JOMO:
Joy of missing out. For those who are so depressed about missing out their sadness becomes joy.
KYC:
Know your customer(alternatively consumer).
Lambo:
This stands for Lamborghini. A small meme within the investing community where the moment someone gets rich they spend their earnings on a lambo. One day we will all have lambos in crypto-valhalla.
Ledger:
Away from Blockchain, it is a book of financial transactions and balances. In the world of crypto, the blockchain functions as a ledger. A digital currency’s ledger records all transactions which took place on a certain block chain network.
Leverage:
Trading with borrowed capital (margin) in order to increase the potential return of an investment.
Liquidity:
The availability of an asset to be bought and sold easily, without affecting its market price.
of the coins.
Margin trading:
The trading of assets or securities bought with borrowed money.
Market cap/MCAP:
A short-term for Market Capitalization. Market Capitalization refers to the market value of a particular cryptocurrency. It is computed by multiplying the Price of an individual unit of coins by the total circulating supply.
Miner:
A computer participating in any cryptocurrency network performing proof of work. This is usually done to receive block rewards.
Mining:
The act of solving a complex math equation to validate a blockchain transaction using computer processing power and specialized hardware.
Mining contract:
A method of investing in bitcoin mining hardware, allowing anyone to rent out a pre-specified amount of hashing power, for an agreed amount of time. The mining service takes care of hardware maintenance, hosting and electricity costs, making it simpler for investors.
Mining rig:
A computer specially designed for mining cryptocurrencies.
Mooning:
A situation the price of a coin rapidly increases in value. Can also be used as: “I hope bitcoin goes to the moon”
Node:
Any computing device that connects to the blockchain network.
Open source:
The practice of sharing the source code for a piece of computer software, allowing it to be distributed and altered by anyone.
OTC:
Over the counter. Trading is done directly between parties.
P2P (Peer to Peer):
A type of network connection where participants interact directly with each other rather than through a centralized third party. The system allows the exchange of resources from A to B, without having to go through a separate server.
Paper wallet:
A form of “cold storage” where the private keys are printed onto a piece of paper and stored offline. Considered as one of the safest crypto wallets, the truth is that it majors in sweeping coins from your wallets.
Pre mining:
The mining of a cryptocurrency by its developers before it is released to the public.
Proof of stake (POS):
A consensus distribution algorithm which essentially rewards you based upon the amount of the coin that you own. In other words, more investment in the coin will leads to more gain when you mine with this protocol In Proof of Stake, the resource held by the “miner” is their stake in the currency.
PROOF OF WORK (POW) :
The competition of computers competing to solve a tough crypto math problem. The first computer that does this is allowed to create new blocks and record information.” The miner is then usually rewarded via transaction fees.
Protocol:
A standardized set of rules for formatting and processing data.
Public key / private key:
A cryptographic code that allows a user to receive cryptocurrencies into an account. The public key is made available to everyone via a publicly accessible directory, and the private key remains confidential to its respective owner. Because the key pair is mathematically related, whatever is encrypted with a public key may only be decrypted by its corresponding private key.
Pump and dump:
Massive buying and selling activity of cryptocurrencies (sometimes organized and to one’s benefit) which essentially result in a phenomenon where the significant surge in the value of coin followed by a huge crash take place in a short time frame.
Recovery phrase:
A set of phrases you are given whereby you can regain or access your wallet should you lose the private key to your wallets — paper, mobile, desktop, and hardware wallet. These phrases are some random 12–24 words. A recovery Phrase can also be called as Recovery seed, Seed Key, Recovery Key, or Seed Phrase.
REKT:
Referring to the word “wrecked”. It defines a situation whereby an investor or trader who has been ruined utterly following the massive losses suffered in crypto industry.
Ripple:
An alternative payment network to Bitcoin based on similar cryptography. The ripple network uses XRP as currency and is capable of sending any asset type.
ROI:
Return on investment.
Safu:
A crypto term for safe popularized by the Bizonnaci YouTube channel after the CEO of Binance tweeted
“Funds are safe."
“the exchage I use got hacked!”“Oh no, are your funds safu?”
“My coins better be safu!”


Sats/Satoshi:
The smallest fraction of a bitcoin is called a “satoshi” or “sat”. It represents one hundred-millionth of a bitcoin and is named after Satoshi Nakamoto.
Satoshi Nakamoto:
This was the pseudonym for the mysterious creator of Bitcoin.
Scalability:
The ability of a cryptocurrency to contain the massive use of its Blockchain.
Sharding:
A scaling solution for the Blockchain. It is generally a method that allows nodes to have partial copies of the complete blockchain in order to increase overall network performance and consensus speeds.
Shitcoin:
Coin with little potential or future prospects.
Shill:
Spreading buzz by heavily promoting a particular coin in the community to create awareness.
Short position:
Selling of a specific cryptocurrency with an expectation that it will drop in value.
Silk road:
The online marketplace where drugs and other illicit items were traded for Bitcoin. This marketplace is using accessed through “TOR”, and VPNs. In October 2013, a Silk Road was shut down in by the FBI.
Smart Contract:
Certain computational benchmarks or barriers that have to be met in turn for money or data to be deposited or even be used to verify things such as land rights.
Software Wallet:
A crypto wallet that exists purely as software files on a computer. Usually, software wallets can be generated for free from a variety of sources.
Solidity:
A contract-oriented coding language for implementing smart contracts on Ethereum. Its syntax is similar to that of JavaScript.
Stable coin:
A cryptocoin with an extremely low volatility that can be used to trade against the overall market.
Staking:
Staking is the process of actively participating in transaction validation (similar to mining) on a proof-of-stake (PoS) blockchain. On these blockchains, anyone with a minimum-required balance of a specific cryptocurrency can validate transactions and earn Staking rewards.
Surge:
When a crypto currency appreciates or goes up in price.
Tank:
The opposite of mooning. When a coin tanks it can also be described as crashing.
Tendies
For traders , the chief prize is “tendies” (chicken tenders, the treat an overgrown man-child receives for being a “Good Boy”) .
Token:
A unit of value that represents a digital asset built on a blockchain system. A token is usually considered as a “coin” of a cryptocurrency, but it really has a wider functionality.
TOR: “The Onion Router” is a free web browser designed to protect users’ anonymity and resist censorship. Tor is usually used surfing the web anonymously and access sites on the “Darkweb”.
Transaction fee:
An amount of money users are charged from their transaction when sending cryptocurrencies.
Volatility:
A measure of fluctuations in the price of a financial instrument over time. High volatility in bitcoin is seen as risky since its shifting value discourages people from spending or accepting it.
Wallet:
A file that stores all your private keys and communicates with the blockchain to perform transactions. It allows you to send and receive bitcoins securely as well as view your balance and transaction history.
Whale:
An investor that holds a tremendous amount of cryptocurrency. Their extraordinary large holdings allow them to control prices and manipulate the market.
Whitepaper:

A comprehensive report or guide made to understand an issue or help decision making. It is also seen as a technical write up that most cryptocurrencies provide to take a deep look into the structure and plan of the cryptocurrency/Blockchain project. Satoshi Nakamoto was the first to release a whitepaper on Bitcoin, titled “Bitcoin: A Peer-to-Peer Electronic Cash System” in late 2008.
And with that I finally complete my odyssey. I sincerely hope that this helped you and if you are new, I welcome you to crypto. If you read all of that I hope it increased, you in knowledge.
my final definition:
Crypto-Family:
A collection of all the HODLers and crypto fanatics. A place where all people alike unite over a love for crypto.
We are all in this together as we pioneer the new world that is crypto currency. I wish you a great day and Happy HODLing.
-u/flacciduck
feel free to comment words or terms that you feel should be included or about any errors I made.
Edit1:some fixes were made and added words.
submitted by flacciduck to CryptoCurrency [link] [comments]

Bitcoin Newcomers FAQ - Please read!

Welcome to the /Bitcoin Sticky FAQ

You've probably been hearing a lot about Bitcoin recently and are wondering what's the big deal? Most of your questions should be answered by the resources below but if you have additional questions feel free to ask them in the comments.
It all started with the release of the release of Satoshi Nakamoto's whitepaper however that will probably go over the head of most readers so we recommend the following videos for a good starting point for understanding how bitcoin works and a little about its long term potential:
Some other great resources include Lopp.net, the Princeton crypto series and James D'Angelo's Bitcoin 101 Blackboard series.
Some excellent writing on Bitcoin's value proposition and future can be found at the Satoshi Nakamoto Institute.
Some Bitcoin statistics can be found here and here. Developer resources can be found here. Peer-reviewed research papers can be found here.
Potential upcoming protocol improvements and scaling resources here and here.
The number of times Bitcoin was declared dead by the media can be found here (LOL!)

Key properties of Bitcoin

Where can I buy bitcoins?

Bitcoin.org and BuyBitcoinWorldwide.com are helpful sites for beginners. You can buy or sell any amount of bitcoin (even just a few dollars worth) and there are several easy methods to purchase bitcoin with cash, credit card or bank transfer. Some of the more popular resources are below, also check out the bitcoinity exchange resources for a larger list of options for purchases.
Here is a listing of local ATMs. If you would like your paycheck automatically converted to bitcoin use Bitwage.
Note: Bitcoins are valued at whatever market price people are willing to pay for them in balancing act of supply vs demand. Unlike traditional markets, bitcoin markets operate 24 hours per day, 365 days per year. Preev is a useful site that that shows how much various denominations of bitcoin are worth in different currencies. Alternatively you can just Google "1 bitcoin in (your local currency)".

Securing your bitcoins

With bitcoin you can "Be your own bank" and personally secure your bitcoins OR you can use third party companies aka "Bitcoin banks" which will hold the bitcoins for you.
Note: For increased security, use Two Factor Authentication (2FA) everywhere it is offered, including email!
2FA requires a second confirmation code to access your account making it much harder for thieves to gain access. Google Authenticator and Authy are the two most popular 2FA services, download links are below. Make sure you create backups of your 2FA codes.
Google Auth Authy OTP Auth
Android Android N/A
iOS iOS iOS

Watch out for scams

As mentioned above, Bitcoin is decentralized, which by definition means there is no official website or Twitter handle or spokesperson or CEO. However, all money attracts thieves. This combination unfortunately results in scammers running official sounding names or pretending to be an authority on YouTube or social media. Many scammers throughout the years have claimed to be the inventor of Bitcoin. Websites like bitcoin(dot)com and the btc subreddit are active scams. Almost all altcoins (shitcoins) are marketed heavily with big promises but are really just designed to separate you from your bitcoin. So be careful: any resource, including all linked in this document, may in the future turn evil. Don't trust, verify. Also as they say in our community "Not your keys, not your coins".

Where can I spend bitcoins?

Check out spendabit or bitcoin directory for millions of merchant options. Also you can spend bitcoin anywhere visa is accepted with bitcoin debit cards such as the CashApp card. Some other useful site are listed below.
Store Product
Gyft Gift cards for hundreds of retailers including Amazon, Target, Walmart, Starbucks, Whole Foods, CVS, Lowes, Home Depot, iTunes, Best Buy, Sears, Kohls, eBay, GameStop, etc.
Spendabit, Overstock and The Bitcoin Directory Retail shopping with millions of results
ShakePay Generate one time use Visa cards in seconds
NewEgg and Dell For all your electronics needs
Bitwa.la, Coinbills, Piixpay, Bitbill.eu, Bylls, Coins.ph, Bitrefill, LivingRoomofSatoshi, Coinsfer, and more Bill payment
Menufy, Takeaway and Thuisbezorgd NL Takeout delivered to your door
Expedia, Cheapair, Destinia, Abitsky, SkyTours, the Travel category on Gyft and 9flats For when you need to get away
Cryptostorm, Mullvad, and PIA VPN services
Namecheap, Porkbun Domain name registration
Stampnik Discounted USPS Priority, Express, First-Class mail postage
Coinmap and AirBitz are helpful to find local businesses accepting bitcoins. A good resource for UK residents is at wheretospendbitcoins.co.uk.
There are also lots of charities which accept bitcoin donations.

Merchant Resources

There are several benefits to accepting bitcoin as a payment option if you are a merchant;
If you are interested in accepting bitcoin as a payment method, there are several options available;

Can I mine bitcoin?

Mining bitcoins can be a fun learning experience, but be aware that you will most likely operate at a loss. Newcomers are often advised to stay away from mining unless they are only interested in it as a hobby similar to folding at home. If you want to learn more about mining you can read more here. Still have mining questions? The crew at /BitcoinMining would be happy to help you out.
If you want to contribute to the bitcoin network by hosting the blockchain and propagating transactions you can run a full node using this setup guide. If you would prefer to keep it simple there are several good options. You can view the global node distribution here.

Earning bitcoins

Just like any other form of money, you can also earn bitcoins by being paid to do a job.
Site Description
WorkingForBitcoins, Bitwage, Cryptogrind, Coinality, Bitgigs, /Jobs4Bitcoins, BitforTip, Rein Project Freelancing
Lolli Earn bitcoin when you shop online!
OpenBazaar, Purse.io, Bitify, /Bitmarket, 21 Market Marketplaces
/GirlsGoneBitcoin NSFW Adult services
A-ads, Coinzilla.io Advertising
You can also earn bitcoins by participating as a market maker on JoinMarket by allowing users to perform CoinJoin transactions with your bitcoins for a small fee (requires you to already have some bitcoins.

Bitcoin-Related Projects

The following is a short list of ongoing projects that might be worth taking a look at if you are interested in current development in the bitcoin space.
Project Description
Lightning Network Second layer scaling
Blockstream, Rootstock and Drivechain Sidechains
Hivemind and Augur Prediction markets
Tierion and Factom Records & Titles on the blockchain
BitMarkets, DropZone, Beaver and Open Bazaar Decentralized markets
JoinMarket and Wasabi Wallet CoinJoin implementation
Coinffeine and Bisq Decentralized bitcoin exchanges
Keybase Identity & Reputation management
Abra Global P2P money transmitter network
Bitcore Open source Bitcoin javascript library

Bitcoin Units

One Bitcoin is quite large (hundreds of £/$/€) so people often deal in smaller units. The most common subunits are listed below:
Unit Symbol Value Info
bitcoin BTC 1 bitcoin one bitcoin is equal to 100 million satoshis
millibitcoin mBTC 1,000 per bitcoin used as default unit in recent Electrum wallet releases
bit bit 1,000,000 per bitcoin colloquial "slang" term for microbitcoin (μBTC)
satoshi sat 100,000,000 per bitcoin smallest unit in bitcoin, named after the inventor
For example, assuming an arbitrary exchange rate of $10000 for one Bitcoin, a $10 meal would equal:
For more information check out the Bitcoin units wiki.
Still have questions? Feel free to ask in the comments below or stick around for our weekly Mentor Monday thread. If you decide to post a question in /Bitcoin, please use the search bar to see if it has been answered before, and remember to follow the community rules outlined on the sidebar to receive a better response. The mods are busy helping manage our community so please do not message them unless you notice problems with the functionality of the subreddit.
Note: This is a community created FAQ. If you notice anything missing from the FAQ or that requires clarification you can edit it here and it will be included in the next revision pending approval.
Welcome to the Bitcoin community and the new decentralized economy!
submitted by BitcoinFan7 to Bitcoin [link] [comments]

Technical: Taproot: Why Activate?

This is a follow-up on https://old.reddit.com/Bitcoin/comments/hqzp14/technical_the_path_to_taproot_activation/
Taproot! Everybody wants it!! But... you might ask yourself: sure, everybody else wants it, but why would I, sovereign Bitcoin HODLer, want it? Surely I can be better than everybody else because I swapped XXX fiat for Bitcoin unlike all those nocoiners?
And it is important for you to know the reasons why you, o sovereign Bitcoiner, would want Taproot activated. After all, your nodes (or the nodes your wallets use, which if you are SPV, you hopefully can pester to your wallet vendoimplementor about) need to be upgraded in order for Taproot activation to actually succeed instead of becoming a hot sticky mess.
First, let's consider some principles of Bitcoin.
I'm sure most of us here would agree that the above are very important principles of Bitcoin and that these are principles we would not be willing to remove. If anything, we would want those principles strengthened (especially the last one, financial privacy, which current Bitcoin is only sporadically strong with: you can get privacy, it just requires effort to do so).
So, how does Taproot affect those principles?

Taproot and Your /Coins

Most HODLers probably HODL their coins in singlesig addresses. Sadly, switching to Taproot would do very little for you (it gives a mild discount at spend time, at the cost of a mild increase in fee at receive time (paid by whoever sends to you, so if it's a self-send from a P2PKH or bech32 address, you pay for this); mostly a wash).
(technical details: a Taproot output is 1 version byte + 32 byte public key, while a P2WPKH (bech32 singlesig) output is 1 version byte + 20 byte public key hash, so the Taproot output spends 12 bytes more; spending from a P2WPKH requires revealing a 32-byte public key later, which is not needed with Taproot, and Taproot signatures are about 9 bytes smaller than P2WPKH signatures, but the 32 bytes plus 9 bytes is divided by 4 because of the witness discount, so it saves about 11 bytes; mostly a wash, it increases blockweight by about 1 virtual byte, 4 weight for each Taproot-output-input, compared to P2WPKH-output-input).
However, as your HODLings grow in value, you might start wondering if multisignature k-of-n setups might be better for the security of your savings. And it is in multisignature that Taproot starts to give benefits!
Taproot switches to using Schnorr signing scheme. Schnorr makes key aggregation -- constructing a single public key from multiple public keys -- almost as trivial as adding numbers together. "Almost" because it involves some fairly advanced math instead of simple boring number adding, but hey when was the last time you added up your grocery list prices by hand huh?
With current P2SH and P2WSH multisignature schemes, if you have a 2-of-3 setup, then to spend, you need to provide two different signatures from two different public keys. With Taproot, you can create, using special moon math, a single public key that represents your 2-of-3 setup. Then you just put two of your devices together, have them communicate to each other (this can be done airgapped, in theory, by sending QR codes: the software to do this is not even being built yet, but that's because Taproot hasn't activated yet!), and they will make a single signature to authorize any spend from your 2-of-3 address. That's 73 witness bytes -- 18.25 virtual bytes -- of signatures you save!
And if you decide that your current setup with 1-of-1 P2PKH / P2WPKH addresses is just fine as-is: well, that's the whole point of a softfork: backwards-compatibility; you can receive from Taproot users just fine, and once your wallet is updated for Taproot-sending support, you can send to Taproot users just fine as well!
(P2WPKH and P2WSH -- SegWit v0 -- addresses start with bc1q; Taproot -- SegWit v1 --- addresses start with bc1p, in case you wanted to know the difference; in bech32 q is 0, p is 1)
Now how about HODLers who keep all, or some, of their coins on custodial services? Well, any custodial service worth its salt would be doing at least 2-of-3, or probably something even bigger, like 11-of-15. So your custodial service, if it switched to using Taproot internally, could save a lot more (imagine an 11-of-15 getting reduced from 11 signatures to just 1!), which --- we can only hope! --- should translate to lower fees and better customer service from your custodial service!
So I think we can say, very accurately, that the Bitcoin principle --- that YOU are in control of your money --- can only be helped by Taproot (if you are doing multisignature), and, because P2PKH and P2WPKH remain validly-usable addresses in a Taproot future, will not be harmed by Taproot. Its benefit to this principle might be small (it mostly only benefits multisignature users) but since it has no drawbacks with this (i.e. singlesig users can continue to use P2WPKH and P2PKH still) this is still a nice, tidy win!
(even singlesig users get a minor benefit, in that multisig users will now reduce their blockchain space footprint, so that fees can be kept low for everybody; so for example even if you have your single set of private keys engraved on titanium plates sealed in an airtight box stored in a safe buried in a desert protected by angry nomads riding giant sandworms because you're the frickin' Kwisatz Haderach, you still gain some benefit from Taproot)
And here's the important part: if P2PKH/P2WPKH is working perfectly fine with you and you decide to never use Taproot yourself, Taproot will not affect you detrimentally. First do no harm!

Taproot and Your Contracts

No one is an island, no one lives alone. Give and you shall receive. You know: by trading with other people, you can gain expertise in some obscure little necessity of the world (and greatly increase your productivity in that little field), and then trade the products of your expertise for necessities other people have created, all of you thereby gaining gains from trade.
So, contracts, which are basically enforceable agreements that facilitate trading with people who you do not personally know and therefore might not trust.
Let's start with a simple example. You want to buy some gewgaws from somebody. But you don't know them personally. The seller wants the money, you want their gewgaws, but because of the lack of trust (you don't know them!! what if they're scammers??) neither of you can benefit from gains from trade.
However, suppose both of you know of some entity that both of you trust. That entity can act as a trusted escrow. The entity provides you security: this enables the trade, allowing both of you to get gains from trade.
In Bitcoin-land, this can be implemented as a 2-of-3 multisignature. The three signatories in the multisgnature would be you, the gewgaw seller, and the escrow. You put the payment for the gewgaws into this 2-of-3 multisignature address.
Now, suppose it turns out neither of you are scammers (whaaaat!). You receive the gewgaws just fine and you're willing to pay up for them. Then you and the gewgaw seller just sign a transaction --- you and the gewgaw seller are 2, sufficient to trigger the 2-of-3 --- that spends from the 2-of-3 address to a singlesig the gewgaw seller wants (or whatever address the gewgaw seller wants).
But suppose some problem arises. The seller gave you gawgews instead of gewgaws. Or you decided to keep the gewgaws but not sign the transaction to release the funds to the seller. In either case, the escrow is notified, and if it can sign with you to refund the funds back to you (if the seller was a scammer) or it can sign with the seller to forward the funds to the seller (if you were a scammer).
Taproot helps with this: like mentioned above, it allows multisignature setups to produce only one signature, reducing blockchain space usage, and thus making contracts --- which require multiple people, by definition, you don't make contracts with yourself --- is made cheaper (which we hope enables more of these setups to happen for more gains from trade for everyone, also, moon and lambos).
(technology-wise, it's easier to make an n-of-n than a k-of-n, making a k-of-n would require a complex setup involving a long ritual with many communication rounds between the n participants, but an n-of-n can be done trivially with some moon math. You can, however, make what is effectively a 2-of-3 by using a three-branch SCRIPT: either 2-of-2 of you and seller, OR 2-of-2 of you and escrow, OR 2-of-2 of escrow and seller. Fortunately, Taproot adds a facility to embed a SCRIPT inside a public key, so you can have a 2-of-2 Taprooted address (between you and seller) with a SCRIPT branch that can instead be spent with 2-of-2 (you + escrow) OR 2-of-2 (seller + escrow), which implements the three-branched SCRIPT above. If neither of you are scammers (hopefully the common case) then you both sign using your keys and never have to contact the escrow, since you are just using the escrow public key without coordinating with them (because n-of-n is trivial but k-of-n requires setup with communication rounds), so in the "best case" where both of you are honest traders, you also get a privacy boost, in that the escrow never learns you have been trading on gewgaws, I mean ewww, gawgews are much better than gewgaws and therefore I now judge you for being a gewgaw enthusiast, you filthy gewgawer).

Taproot and Your Contracts, Part 2: Cryptographic Boogaloo

Now suppose you want to buy some data instead of things. For example, maybe you have some closed-source software in trial mode installed, and want to pay the developer for the full version. You want to pay for an activation code.
This can be done, today, by using an HTLC. The developer tells you the hash of the activation code. You pay to an HTLC, paying out to the developer if it reveals the preimage (the activation code), or refunding the money back to you after a pre-agreed timeout. If the developer claims the funds, it has to reveal the preimage, which is the activation code, and you can now activate your software. If the developer does not claim the funds by the timeout, you get refunded.
And you can do that, with HTLCs, today.
Of course, HTLCs do have problems:
Fortunately, with Schnorr (which is enabled by Taproot), we can now use the Scriptless Script constuction by Andrew Poelstra. This Scriptless Script allows a new construction, the PTLC or Pointlocked Timelocked Contract. Instead of hashes and preimages, just replace "hash" with "point" and "preimage" with "scalar".
Or as you might know them: "point" is really "public key" and "scalar" is really a "private key". What a PTLC does is that, given a particular public key, the pointlocked branch can be spent only if the spender reveals the private key of the given public key to you.
Another nice thing with PTLCs is that they are deniable. What appears onchain is just a single 2-of-2 signature between you and the developemanufacturer. It's like a magic trick. This signature has no special watermarks, it's a perfectly normal signature (the pledge). However, from this signature, plus some datta given to you by the developemanufacturer (known as the adaptor signature) you can derive the private key of a particular public key you both agree on (the turn). Anyone scraping the blockchain will just see signatures that look just like every other signature, and as long as nobody manages to hack you and get a copy of the adaptor signature or the private key, they cannot get the private key behind the public key (point) that the pointlocked branch needs (the prestige).
(Just to be clear, the public key you are getting the private key from, is distinct from the public key that the developemanufacturer will use for its funds. The activation key is different from the developer's onchain Bitcoin key, and it is the activation key whose private key you will be learning, not the developer's/manufacturer's onchain Bitcoin key).
So:
Taproot lets PTLCs exist onchain because they enable Schnorr, which is a requirement of PTLCs / Scriptless Script.
(technology-wise, take note that Scriptless Script works only for the "pointlocked" branch of the contract; you need normal Script, or a pre-signed nLockTimed transaction, for the "timelocked" branch. Since Taproot can embed a script, you can have the Taproot pubkey be a 2-of-2 to implement the Scriptless Script "pointlocked" branch, then have a hidden script that lets you recover the funds with an OP_CHECKLOCKTIMEVERIFY after the timeout if the seller does not claim the funds.)

Quantum Quibbles!

Now if you were really paying attention, you might have noticed this parenthetical:
(technical details: a Taproot output is 1 version byte + 32 byte public key, while a P2WPKH (bech32 singlesig) output is 1 version byte + 20 byte public key hash...)
So wait, Taproot uses raw 32-byte public keys, and not public key hashes? Isn't that more quantum-vulnerable??
Well, in theory yes. In practice, they probably are not.
It's not that hashes can be broken by quantum computes --- they're still not. Instead, you have to look at how you spend from a P2WPKH/P2PKH pay-to-public-key-hash.
When you spend from a P2PKH / P2WPKH, you have to reveal the public key. Then Bitcoin hashes it and checks if this matches with the public-key-hash, and only then actually validates the signature for that public key.
So an unconfirmed transaction, floating in the mempools of nodes globally, will show, in plain sight for everyone to see, your public key.
(public keys should be public, that's why they're called public keys, LOL)
And if quantum computers are fast enough to be of concern, then they are probably fast enough that, in the several minutes to several hours from broadcast to confirmation, they have already cracked the public key that is openly broadcast with your transaction. The owner of the quantum computer can now replace your unconfirmed transaction with one that pays the funds to itself. Even if you did not opt-in RBF, miners are still incentivized to support RBF on RBF-disabled transactions.
So the extra hash is not as significant a protection against quantum computers as you might think. Instead, the extra hash-and-compare needed is just extra validation effort.
Further, if you have ever, in the past, spent from the address, then there exists already a transaction indelibly stored on the blockchain, openly displaying the public key from which quantum computers can derive the private key. So those are still vulnerable to quantum computers.
For the most part, the cryptographers behind Taproot (and Bitcoin Core) are of the opinion that quantum computers capable of cracking Bitcoin pubkeys are unlikely to appear within a decade or two.
So:
For now, the homomorphic and linear properties of elliptic curve cryptography provide a lot of benefits --- particularly the linearity property is what enables Scriptless Script and simple multisignature (i.e. multisignatures that are just 1 signature onchain). So it might be a good idea to take advantage of them now while we are still fairly safe against quantum computers. It seems likely that quantum-safe signature schemes are nonlinear (thus losing these advantages).

Summary

I Wanna Be The Taprooter!

So, do you want to help activate Taproot? Here's what you, mister sovereign Bitcoin HODLer, can do!

But I Hate Taproot!!

That's fine!

Discussions About Taproot Activation

submitted by almkglor to Bitcoin [link] [comments]

Taproot, CoinJoins, and Cross-Input Signature Aggregation

It is a very common misconception that the upcoming Taproot upgrade helps CoinJoin.
TLDR: The upcoming Taproot upgrade does not help equal-valued CoinJoin at all, though it potentially increases the privacy of other protocols, such as the Lightning Network, and escrow contract schemes.
If you want to learn more, read on!

Equal-valued CoinJoins

Let's start with equal-valued CoinJoins, the type JoinMarket and Wasabi use. What happens is that some number of participants agree on some common value all of them use. With JoinMarket the taker defines this value and pays the makers to agree to it, with Wasabi the server defines a value approximately 0.1 BTC.
Then, each participant provides inputs that they unilaterally control, totaling equal or greater than the common value. Typically since each input is unilaterally controlled, each input just requires a singlesig. Each participant also provides up to two addresses they control: one of these will be paid with the common value, while the other will be used for any extra value in the inputs they provided (i.e. the change output).
The participants then make a single transaction that spends all the provided inputs and pays out to the appropriate outputs. The inputs and outputs are shuffled in some secure manner. Then the unsigned transaction is distributed back to all participants.
Finally, each participant checks that the transaction spends the inputs it provided (and more importantly does not spend any other coins it might own that it did not provide for this CoinJoin!) and that the transaction pays out to the appropriate address(es) it controls. Once they have validated the transaction, they ratify it by signing for each of the inputs it provided.
Once every participant has provided signatures for all inputs it registered, the transaction is now completely signed and the CoinJoin transaction is now validly confirmable.
CoinJoin is a very simple and direct privacy boost, it requires no SCRIPTs, needs only singlesig, etc.

Privacy

Let's say we have two participants who have agreed on a common amount of 0.1 BTC. One provides a 0.105 coin as input, the other provides a 0.114 coin as input. This results in a CoinJoin with a 0.105 coin and a 0.114 coin as input, and outputs with 0.1, 0.005, 0.014, and 0.1 BTC.
Now obviously the 0.005 output came from the 0.105 input, and the 0.014 output came from the 0.114 input.
But the two 0.1 BTC outputs cannot be correlated with either input! There is no correlating information, since either output could have come from either input. That is how common CoinJoin implementations like Wasabi and JoinMarket gain privacy.

Banning CoinJoins

Unfortunately, large-scale CoinJoins like that made by Wasabi and JoinMarket are very obvious.
All you have to do is look for a transactions where, say, more than 3 outputs are the same equal value, and the number of inputs is equal or larger than the number of equal-valued outputs. Thus, it is trivial to identify equal-valued CoinJoins made by Wasabi and JoinMarket. You can even trivially differentiate them: Wasabi equal-valued CoinJoins are going to have a hundred or more inputs, with outputs that are in units of approximately 0.1 BTC, while JoinMarket CoinJoins have equal-valued outputs of less than a dozen (between 4 to 6 usually) and with the common value varying wildly from as low as 0.001 BTC to as high as a dozen BTC or more.
This has led to a number of anti-privacy exchanges to refuse to credit custodially-held accounts if the incoming deposit is within a few hops of an equal-valued CoinJoin, usually citing concerns about regulations. Crucially, the exchange continues to hold private keys for those "banned" deposits, and can still spend them, thus this is effectively a theft. If your exchange does this to you, you should report that exchange as stealing money from its customers. Not your keys not your coins.
Thus, CoinJoins represent a privacy tradeoff:

Taproot

Let's now briefly discuss that nice new shiny thing called Taproot.
Taproot includes two components:
This has some nice properties:

Taproot DOES NOT HELP CoinJoin

So let's review!
CoinJoin:
Taproot:
There is absolutely no overlap. Taproot helps things that CoinJoin does not use. CoinJoin uses things that Taproot does not improve.

B-but They Said!!

A lot of early reporting on Taproot claimed that Taproot benefits CoinJoin.
What they are confusing is that earlier drafts of Taproot included a feature called cross-input signature aggregation.
In current Bitcoin, every input, to be spent, has to be signed individually. With cross-input signature aggregation, all inputs that support this feature are signed with a single signature that covers all those inputs. So for example if you would spend two inputs, current Bitcoin requires a signature for each input, but with cross-input signature aggregation you can sign both of them with a single signature. This works even if the inputs have different public keys: two inputs with cross-input signature aggregation effectively define a 2-of-2 public key, and you can only sign for that input if you know the private keys for both inputs, or if you are cooperatively signing with somebody who knows the private key of the other input.
This helps CoinJoin costs. Since CoinJoins will have lots of inputs (each participant will provide at least one, and probably will provide more, and larger participant sets are better for more privacy in CoinJoin), if all of them enabled cross-input signature aggregation, such large CoinJoins can have only a single signature.
This complicates the signing process for CoinJoins (the signers now have to sign cooperatively) but it can be well worth it for the reduced signature size and onchain cost.
But note that the while cross-input signature aggregation improves the cost of CoinJoins, it does not improve the privacy! Equal-valued CoinJoins are still obvious and still readily bannable by privacy-hating exchanges. It does not improve the privacy of CoinJoin. Instead, see https://old.reddit.com/Bitcoin/comments/gqb3udesign_for_a_coinswap_implementation_fo

Why isn't cross-input signature aggregation in?

There's some fairly complex technical reasons why cross-input signature aggregation isn't in right now in the current Taproot proposal.
The primary reason was to reduce the technical complexity of Taproot, in the hope that it would be easier to convince users to activate (while support for Taproot is quite high, developers have become wary of being hopeful that new proposals will ever activate, given the previous difficulties with SegWit).
The main technical complexity here is that it interacts with future ways to extend Bitcoin.
The rest of this writeup assumes you already know about how Bitcoin SCRIPT works. If you don't understand how Bitcoin SCRIPT works at the low-level, then the TLDR is that cross-input signature aggregation complicates how to extend Bitcoin in the future, so it was deferred to let the develoeprs think more about it.
(this is how I understand it; perhaps pwuille or ajtowns can give a better summary.)
In detail, Taproot also introduces OP_SUCCESS opcodes. If you know about the OP_NOP opcodes already defined in current Bitcoin, well, OP_SUCCESS is basically "OP_NOP done right".
Now, OP_NOP is a do-nothing operation. It can be replaced in future versions of Bitcoin by having that operation check some condition, and then fail if the condition is not satisfied. For example, both OP_CHECKLOCKTIMEVERIFY and OP_CHECKSEQUENCEVERIFY were previously OP_NOP opcodes. Older nodes will see an OP_CHECKLOCKTIMEVERIFY and think it does nothing, but newer nodes will check if the nLockTime field has a correct specified value, and fail if the condition is not satisfied. Since most of the nodes on the network are using much newer versions of the node software, older nodes are protected from miners who try to misspend any OP_CHECKLOCKTIMEVERIFY/OP_CHECKSEQUENCEVERIFY, and those older nodes will still remain capable of synching with the rest of the network: a dedication to strict backward-compatibility necessary for a consensus system.
Softforks basically mean that a script that passes in the latest version must also be passing in all older versions. A script cannot be passing in newer versions but failing in older versions, because that would kick older nodes off the network (i.e. it would be a hardfork).
But OP_NOP is a very restricted way of adding opcodes. Opcodes that replace OP_NOP can only do one thing: check if some condition is true. They can't push new data on the stack, they can't pop items off the stack. For example, suppose instead of OP_CHECKLOCKTIMEVERIFY, we had added a OP_GETBLOCKHEIGHT opcode. This opcode would push the height of the blockchain on the stack. If this command replaced an older OP_NOP opcode, then a script like OP_GETBLOCKHEIGHT 650000 OP_EQUAL might pass in some future Bitcoin version, but older versions would see OP_NOP 650000 OP_EQUAL, which would fail because OP_EQUAL expects two items on the stack. So older versions will fail a SCRIPT that newer versions will pass, which is a hardfork and thus a backwards incompatibility.
OP_SUCCESS is different. Instead, old nodes, when parsing the SCRIPT, will see OP_SUCCESS, and, without executing the body, will consider the SCRIPT as passing. So, the OP_GETBLOCKHEIGHT 650000 OP_EQUAL example will now work: a future version of Bitcoin might pass it, and existing nodes that don't understand OP_GETBLOCKHEIGHT will se OP_SUCCESS 650000 OP_EQUAL, and will not execute the SCRIPT at all, instead passing it immediately. So a SCRIPT that might pass in newer versions will pass for older versions, which keeps the back-compatibility consensus that a softfork needs.
So how does OP_SUCCESS make things difficult for cross-input signatur aggregation? Well, one of the ways to ask for a signature to be verified is via the opcodes OP_CHECKSIGVERIFY. With cross-input signature aggregation, if a public key indicates it can be used for cross-input signature aggregation, instead of OP_CHECKSIGVERIFY actually requiring the signature on the stack, the stack will contain a dummy 0 value for the signature, and the public key is instead added to a "sum" public key (i.e. an n-of-n that is dynamically extended by one more pubkey for each OP_CHECKSIGVERIFY operation that executes) for the single signature that is verified later by the cross-input signature aggregation validation algorithm00.
The important part here is that the OP_CHECKSIGVERIFY has to execute, in order to add its public key to the set of public keys to be checked in the single signature.
But remember that an OP_SUCCESS prevents execution! As soon as the SCRIPT is parsed, if any opcode is OP_SUCCESS, that is considered as passing, without actually executing the SCRIPT, because the OP_SUCCESS could mean something completely different in newer versions and current versions should assume nothing about what it means. If the SCRIPT contains some OP_CHECKSIGVERIFY command in addition to an OP_SUCCESS, that command is not executed by current versions, and thus they cannot add any public keys given by OP_CHECKSIGVERIFY. Future versions also have to accept that: if they parsed an OP_SUCCESS command that has a new meaning in the future, and then execute an OP_CHECKSIGVERIFY in that SCRIPT, they cannot add the public key into the same "sum" public key that older nodes use, because older nodes cannot see them. This means that you might need more than one signature in the future, in the presence of an opcode that replaces some OP_SUCCESS.
Thus, because of the complexity of making cross-input signature aggregation work compatibly with future extensions to the protocol, cross-input signature aggregation was deferred.
submitted by almkglor to Bitcoin [link] [comments]

Comparison between Avalanche, Cosmos and Polkadot

Comparison between Avalanche, Cosmos and Polkadot
Reposting after was mistakenly removed by mods (since resolved - Thanks)
A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important.
For better formatting see https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b
https://preview.redd.it/e8s7dj3ivpq51.png?width=428&format=png&auto=webp&s=5d0463462702637118c7527ebf96e91f4a80b290

Overview

Cosmos

Cosmos is a heterogeneous network of many independent parallel blockchains, each powered by classical BFT consensus algorithms like Tendermint. Developers can easily build custom application specific blockchains, called Zones, through the Cosmos SDK framework. These Zones connect to Hubs, which are specifically designed to connect zones together.
The vision of Cosmos is to have thousands of Zones and Hubs that are Interoperable through the Inter-Blockchain Communication Protocol (IBC). Cosmos can also connect to other systems through peg zones, which are specifically designed zones that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Cosmos does not use Sharding with each Zone and Hub being sovereign with their own validator set.
For a more in-depth look at Cosmos and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
(There's a youtube video with a quick video overview of Cosmos on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Polkadot

Polkadot is a heterogeneous blockchain protocol that connects multiple specialised blockchains into one unified network. It achieves scalability through a sharding infrastructure with multiple blockchains running in parallel, called parachains, that connect to a central chain called the Relay Chain. Developers can easily build custom application specific parachains through the Substrate development framework.
The relay chain validates the state transition of connected parachains, providing shared state across the entire ecosystem. If the Relay Chain must revert for any reason, then all of the parachains would also revert. This is to ensure that the validity of the entire system can persist, and no individual part is corruptible. The shared state makes it so that the trust assumptions when using parachains are only those of the Relay Chain validator set, and no other. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. The hope is to have 100 parachains connect to the relay chain.
For a more in-depth look at Polkadot and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
(There's a youtube video with a quick video overview of Polkadot on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Avalanche

Avalanche is a platform of platforms, ultimately consisting of thousands of subnets to form a heterogeneous interoperable network of many blockchains, that takes advantage of the revolutionary Avalanche Consensus protocols to provide a secure, globally distributed, interoperable and trustless framework offering unprecedented decentralisation whilst being able to comply with regulatory requirements.
Avalanche allows anyone to create their own tailor-made application specific blockchains, supporting multiple custom virtual machines such as EVM and WASM and written in popular languages like Go (with others coming in the future) rather than lightly used, poorly-understood languages like Solidity. This virtual machine can then be deployed on a custom blockchain network, called a subnet, which consist of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance.
Avalanche was built with serving financial markets in mind. It has native support for easily creating and trading digital smart assets with complex custom rule sets that define how the asset is handled and traded to ensure regulatory compliance can be met. Interoperability is enabled between blockchains within a subnet as well as between subnets. Like Cosmos and Polkadot, Avalanche is also able to connect to other systems through bridges, through custom virtual machines made to interact with another ecosystem such as Ethereum and Bitcoin.
For a more in-depth look at Avalanche and provide more reference to points made in this article, please see here and here
(There's a youtube video with a quick video overview of Avalanche on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Comparison between Cosmos, Polkadot and Avalanche

A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions. I want to stress that it’s not a case of one platform being the killer of all other platforms, far from it. There won’t be one platform to rule them all, and too often the tribalism has plagued this space. Blockchains are going to completely revolutionise most industries and have a profound effect on the world we know today. It’s still very early in this space with most adoption limited to speculation and trading mainly due to the limitations of Blockchain and current iteration of Ethereum, which all three of these platforms hope to address. For those who just want a quick summary see the image at the bottom of the article. With that said let’s have a look

Scalability

Cosmos

Each Zone and Hub in Cosmos is capable of up to around 1000 transactions per second with bandwidth being the bottleneck in consensus. Cosmos aims to have thousands of Zones and Hubs all connected through IBC. There is no limit on the number of Zones / Hubs that can be created

Polkadot

Parachains in Polkadot are also capable of up to around 1500 transactions per second. A portion of the parachain slots on the Relay Chain will be designated as part of the parathread pool, the performance of a parachain is split between many parathreads offering lower performance and compete amongst themselves in a per-block auction to have their transactions included in the next relay chain block. The number of parachains is limited by the number of validators on the relay chain, they hope to be able to achieve 100 parachains.

Avalanche

Avalanche is capable of around 4500 transactions per second per subnet, this is based on modest hardware requirements to ensure maximum decentralisation of just 2 CPU cores and 4 GB of Memory and with a validator size of over 2,000 nodes. Performance is CPU-bound and if higher performance is required then more specialised subnets can be created with higher minimum requirements to be able to achieve 10,000 tps+ in a subnet. Avalanche aims to have thousands of subnets (each with multiple virtual machines / blockchains) all interoperable with each other. There is no limit on the number of Subnets that can be created.

Results

All three platforms offer vastly superior performance to the likes of Bitcoin and Ethereum 1.0. Avalanche with its higher transactions per second, no limit on the number of subnets / blockchains that can be created and the consensus can scale to potentially millions of validators all participating in consensus scores ✅✅✅. Polkadot claims to offer more tps than cosmos, but is limited to the number of parachains (around 100) whereas with Cosmos there is no limit on the number of hubs / zones that can be created. Cosmos is limited to a fairly small validator size of around 200 before performance degrades whereas Polkadot hopes to be able to reach 1000 validators in the relay chain (albeit only a small number of validators are assigned to each parachain). Thus Cosmos and Polkadot scores ✅✅
https://preview.redd.it/2o0brllyvpq51.png?width=1000&format=png&auto=webp&s=8f62bb696ecaafcf6184da005d5fe0129d504518

Decentralisation

Cosmos

Tendermint consensus is limited to around 200 validators before performance starts to degrade. Whilst there is the Cosmos Hub it is one of many hubs in the network and there is no central hub or limit on the number of zones / hubs that can be created.

Polkadot

Polkadot has 1000 validators in the relay chain and these are split up into a small number that validate each parachain (minimum of 14). The relay chain is a central point of failure as all parachains connect to it and the number of parachains is limited depending on the number of validators (they hope to achieve 100 parachains). Due to the limited number of parachain slots available, significant sums of DOT will need to be purchased to win an auction to lease the slot for up to 24 months at a time. Thus likely to lead to only those with enough funds to secure a parachain slot. Parathreads are however an alternative for those that require less and more varied performance for those that can’t secure a parachain slot.

Avalanche

Avalanche consensus scan scale to tens of thousands of validators, even potentially millions of validators all participating in consensus through repeated sub-sampling. The more validators, the faster the network becomes as the load is split between them. There are modest hardware requirements so anyone can run a node and there is no limit on the number of subnets / virtual machines that can be created.

Results

Avalanche offers unparalleled decentralisation using its revolutionary consensus protocols that can scale to millions of validators all participating in consensus at the same time. There is no limit to the number of subnets and virtual machines that can be created, and they can be created by anyone for a small fee, it scores ✅✅✅. Cosmos is limited to 200 validators but no limit on the number of zones / hubs that can be created, which anyone can create and scores ✅✅. Polkadot hopes to accommodate 1000 validators in the relay chain (albeit these are split amongst each of the parachains). The number of parachains is limited and maybe cost prohibitive for many and the relay chain is a ultimately a single point of failure. Whilst definitely not saying it’s centralised and it is more decentralised than many others, just in comparison between the three, it scores ✅
https://preview.redd.it/ckfamee0wpq51.png?width=1000&format=png&auto=webp&s=c4355f145d821fabf7785e238dbc96a5f5ce2846

Latency

Cosmos

Tendermint consensus used in Cosmos reaches finality within 6 seconds. Cosmos consists of many Zones and Hubs that connect to each other. Communication between 2 zones could pass through many hubs along the way, thus also can contribute to latency times depending on the path taken as explained in part two of the articles on Cosmos. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Polkadot

Polkadot provides a Hybrid consensus protocol consisting of Block producing protocol, BABE, and then a finality gadget called GRANDPA that works to agree on a chain, out of many possible forks, by following some simpler fork choice rule. Rather than voting on every block, instead it reaches agreements on chains. As soon as more than 2/3 of validators attest to a chain containing a certain block, all blocks leading up to that one are finalized at once.
If an invalid block is detected after it has been finalised then the relay chain would need to be reverted along with every parachain. This is particularly important when connecting to external blockchains as those don’t share the state of the relay chain and thus can’t be rolled back. The longer the time period, the more secure the network is, as there is more time for additional checks to be performed and reported but at the expense of finality. Finality is reached within 60 seconds between parachains but for external ecosystems like Ethereum their state obviously can’t be rolled back like a parachain and so finality will need to be much longer (60 minutes was suggested in the whitepaper) and discussed in more detail in part three

Avalanche

Avalanche consensus achieves finality within 3 seconds, with most happening sub 1 second, immutable and completely irreversible. Any subnet can connect directly to another without having to go through multiple hops and any VM can talk to another VM within the same subnet as well as external subnets. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Results

With regards to performance far too much emphasis is just put on tps as a metric, the other equally important metric, if not more important with regards to finance is latency. Throughput measures the amount of data at any given time that it can handle whereas latency is the amount of time it takes to perform an action. It’s pointless saying you can process more transactions per second than VISA when it takes 60 seconds for a transaction to complete. Low latency also greatly increases general usability and customer satisfaction, nowadays everyone expects card payments, online payments to happen instantly. Avalanche achieves the best results scoring ✅✅✅, Cosmos with comes in second with 6 second finality ✅✅ and Polkadot with 60 second finality (which may be 60 minutes for external blockchains) scores ✅
https://preview.redd.it/kzup5x42wpq51.png?width=1000&format=png&auto=webp&s=320eb4c25dc4fc0f443a7a2f7ff09567871648cd

Shared Security

Cosmos

Every Zone and Hub in Cosmos has their own validator set and different trust assumptions. Cosmos are researching a shared security model where a Hub can validate the state of connected zones for a fee but not released yet. Once available this will make shared security optional rather than mandatory.

Polkadot

Shared Security is mandatory with Polkadot which uses a Shared State infrastructure between the Relay Chain and all of the connected parachains. If the Relay Chain must revert for any reason, then all of the parachains would also revert. Every parachain makes the same trust assumptions, and as such the relay chain validates state transition and enables seamless interoperability between them. In return for this benefit, they have to purchase DOT and win an auction for one of the available parachain slots.
However, parachains can’t just rely on the relay chain for their security, they will also need to implement censorship resistance measures and utilise proof of work / proof of stake for each parachain as well as discussed in part three, thus parachains can’t just rely on the security of the relay chain, they need to ensure sybil resistance mechanisms using POW and POS are implemented on the parachain as well.

Avalanche

A subnet in Avalanche consists of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance. So unlike in Cosmos where each zone / hub has their own validators, A subnet can validate a single or many virtual machines / blockchains with a single validator set. Shared security is optional

Results

Shared security is mandatory in polkadot and a key design decision in its infrastructure. The relay chain validates the state transition of all connected parachains and thus scores ✅✅✅. Subnets in Avalanche can validate state of either a single or many virtual machines. Each subnet can have their own token and shares a validator set, where complex rulesets can be configured to meet regulatory compliance. It scores ✅ ✅. Every Zone and Hub in cosmos has their own validator set / token but research is underway to have the hub validate the state transition of connected zones, but as this is still early in the research phase scores ✅ for now.
https://preview.redd.it/pbgyk3o3wpq51.png?width=1000&format=png&auto=webp&s=61c18e12932a250f5633c40633810d0f64520575

Current Adoption

Cosmos

The Cosmos project started in 2016 with an ICO held in April 2017. There are currently around 50 projects building on the Cosmos SDK with a full list can be seen here and filtering for Cosmos SDK . Not all of the projects will necessarily connect using native cosmos sdk and IBC and some have forked parts of the Cosmos SDK and utilise the tendermint consensus such as Binance Chain but have said they will connect in the future.

Polkadot

The Polkadot project started in 2016 with an ICO held in October 2017. There are currently around 70 projects building on Substrate and a full list can be seen here and filtering for Substrate Based. Like with Cosmos not all projects built using substrate will necessarily connect to Polkadot and parachains or parathreads aren’t currently implemented in either the Live or Test network (Kusama) as of the time of this writing.

Avalanche

Avalanche in comparison started much later with Ava Labs being founded in 2018. Avalanche held it’s ICO in July 2020. Due to lot shorter time it has been in development, the number of projects confirmed are smaller with around 14 projects currently building on Avalanche. Due to the customisability of the platform though, many virtual machines can be used within a subnet making the process incredibly easy to port projects over. As an example, it will launch with the Ethereum Virtual Machine which enables byte for byte compatibility and all the tooling like Metamask, Truffle etc. will work, so projects can easily move over to benefit from the performance, decentralisation and low gas fees offered. In the future Cosmos and Substrate virtual machines could be implemented on Avalanche.

Results

Whilst it’s still early for all 3 projects (and the entire blockchain space as a whole), there is currently more projects confirmed to be building on Cosmos and Polkadot, mostly due to their longer time in development. Whilst Cosmos has fewer projects, zones are implemented compared to Polkadot which doesn’t currently have parachains. IBC to connect zones and hubs together is due to launch Q2 2021, thus both score ✅✅✅. Avalanche has been in development for a lot shorter time period, but is launching with an impressive feature set right from the start with ability to create subnets, VMs, assets, NFTs, permissioned and permissionless blockchains, cross chain atomic swaps within a subnet, smart contracts, bridge to Ethereum etc. Applications can easily port over from other platforms and use all the existing tooling such as Metamask / Truffle etc but benefit from the performance, decentralisation and low gas fees offered. Currently though just based on the number of projects in comparison it scores ✅.
https://preview.redd.it/4zpi6s85wpq51.png?width=1000&format=png&auto=webp&s=e91ade1a86a5d50f4976f3b23a46e9287b08e373

Enterprise Adoption

Cosmos

Cosmos enables permissioned and permissionless zones which can connect to each other with the ability to have full control over who validates the blockchain. For permissionless zones each zone / hub can have their own token and they are in control who validates.

Polkadot

With polkadot the state transition is performed by a small randomly selected assigned group of validators from the relay chain plus with the possibility that state is rolled back if an invalid transaction of any of the other parachains is found. This may pose a problem for enterprises that need complete control over who performs validation for regulatory reasons. In addition due to the limited number of parachain slots available Enterprises would have to acquire and lock up large amounts of a highly volatile asset (DOT) and have the possibility that they are outbid in future auctions and find they no longer can have their parachain validated and parathreads don’t provide the guaranteed performance requirements for the application to function.

Avalanche

Avalanche enables permissioned and permissionless subnets and complex rulesets can be configured to meet regulatory compliance. For example a subnet can be created where its mandatory that all validators are from a certain legal jurisdiction, or they hold a specific license and regulated by the SEC etc. Subnets are also able to scale to tens of thousands of validators, and even potentially millions of nodes, all participating in consensus so every enterprise can run their own node rather than only a small amount. Enterprises don’t have to hold large amounts of a highly volatile asset, but instead pay a fee in AVAX for the creation of the subnets and blockchains which is burnt.

Results

Avalanche provides the customisability to run private permissioned blockchains as well as permissionless where the enterprise is in control over who validates the blockchain, with the ability to use complex rulesets to meet regulatory compliance, thus scores ✅✅✅. Cosmos is also able to run permissioned and permissionless zones / hubs so enterprises have full control over who validates a blockchain and scores ✅✅. Polkadot requires locking up large amounts of a highly volatile asset with the possibility of being outbid by competitors and being unable to run the application if the guaranteed performance is required and having to migrate away. The relay chain validates the state transition and can roll back the parachain should an invalid block be detected on another parachain, thus scores ✅.
https://preview.redd.it/li5jy6u6wpq51.png?width=1000&format=png&auto=webp&s=e2a95f1f88e5efbcf9e23c789ae0f002c8eb73fc

Interoperability

Cosmos

Cosmos will connect Hubs and Zones together through its IBC protocol (due to release in Q1 2020). Connecting to blockchains outside of the Cosmos ecosystem would either require the connected blockchain to fork their code to implement IBC or more likely a custom “Peg Zone” will be created specific to work with a particular blockchain it’s trying to bridge to such as Ethereum etc. Each Zone and Hub has different trust levels and connectivity between 2 zones can have different trust depending on which path it takes (this is discussed more in this article). Finality time is low at 6 seconds, but depending on the number of hops, this can increase significantly.

Polkadot

Polkadot’s shared state means each parachain that connects shares the same trust assumptions, of the relay chain validators and that if one blockchain needs to be reverted, all of them will need to be reverted. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Finality time between parachains is around 60 seconds, but longer will be needed (initial figures of 60 minutes in the whitepaper) for connecting to external blockchains. Thus limiting the appeal of connecting two external ecosystems together through Polkadot. Polkadot is also limited in the number of Parachain slots available, thus limiting the amount of blockchains that can be bridged. Parathreads could be used for lower performance bridges, but the speed of future blockchains is only going to increase.

Avalanche

A subnet can validate multiple virtual machines / blockchains and all blockchains within a subnet share the same trust assumptions / validator set, enabling cross chain interoperability. Interoperability is also possible between any other subnet, with the hope Avalanche will consist of thousands of subnets. Each subnet may have a different trust level, but as the primary network consists of all validators then this can be used as a source of trust if required. As Avalanche supports many virtual machines, bridges to other ecosystems are created by running the connected virtual machine. There will be an Ethereum bridge using the EVM shortly after mainnet. Finality time is much faster at sub 3 seconds (with most happening under 1 second) with no chance of rolling back so more appealing when connecting to external blockchains.

Results

All 3 systems are able to perform interoperability within their ecosystem and transfer assets as well as data, as well as use bridges to connect to external blockchains. Cosmos has different trust levels between its zones and hubs and can create issues depending on which path it takes and additional latency added. Polkadot provides the same trust assumptions for all connected parachains but has long finality and limited number of parachain slots available. Avalanche provides the same trust assumptions for all blockchains within a subnet, and different trust levels between subnets. However due to the primary network consisting of all validators it can be used for trust. Avalanche also has a much faster finality time with no limitation on the number of blockchains / subnets / bridges that can be created. Overall all three blockchains excel with interoperability within their ecosystem and each score ✅✅.
https://preview.redd.it/ai0bkbq8wpq51.png?width=1000&format=png&auto=webp&s=3e85ee6a3c4670f388ccea00b0c906c3fb51e415

Tokenomics

Cosmos

The ATOM token is the native token for the Cosmos Hub. It is commonly mistaken by people that think it’s the token used throughout the cosmos ecosystem, whereas it’s just used for one of many hubs in Cosmos, each with their own token. Currently ATOM has little utility as IBC isn’t released and has no connections to other zones / hubs. Once IBC is released zones may prefer to connect to a different hub instead and so ATOM is not used. ATOM isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for ATOM as of the time of this writing is $1 Billion with 203 million circulating supply. Rewards can be earnt through staking to offset the dilution caused by inflation. Delegators can also get slashed and lose a portion of their ATOM should the validator misbehave.

Polkadot

Polkadot’s native token is DOT and it’s used to secure the Relay Chain. Each parachain needs to acquire sufficient DOT to win an auction on an available parachain lease period of up to 24 months at a time. Parathreads have a fixed fee for registration that would realistically be much lower than the cost of acquiring a parachain slot and compete with other parathreads in a per-block auction to have their transactions included in the next relay chain block. DOT isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for DOT as of the time of this writing is $4.4 Billion with 852 million circulating supply. Delegators can also get slashed and lose their DOT (potentially 100% of their DOT for serious attacks) should the validator misbehave.

Avalanche

AVAX is the native token for the primary network in Avalanche. Every validator of any subnet also has to validate the primary network and stake a minimum of 2000 AVAX. There is no limit to the number of validators like other consensus methods then this can cater for tens of thousands even potentially millions of validators. As every validator validates the primary network, this can be a source of trust for interoperability between subnets as well as connecting to other ecosystems, thus increasing amount of transaction fees of AVAX. There is no slashing in Avalanche, so there is no risk to lose your AVAX when selecting a validator, instead rewards earnt for staking can be slashed should the validator misbehave. Because Avalanche doesn’t have direct slashing, it is technically possible for someone to both stake AND deliver tokens for something like a flash loan, under the invariant that all tokens that are staked are returned, thus being able to make profit with staked tokens outside of staking itself.
There will also be a separate subnet for Athereum which is a ‘spoon,’ or friendly fork, of Ethereum, which benefits from the Avalanche consensus protocol and applications in the Ethereum ecosystem. It’s native token ATH will be airdropped to ETH holders as well as potentially AVAX holders as well. This can be done for other blockchains as well.
Transaction fees on the primary network for all 3 of the blockchains as well as subscription fees for creating a subnet and blockchain are paid in AVAX and are burnt, creating deflationary pressure. AVAX is a fixed capped supply of 720 million tokens, creating scarcity rather than an unlimited supply which continuously increase of tokens at a compounded rate each year like others. Initially there will be 360 tokens minted at Mainnet with vesting periods between 1 and 10 years, with tokens gradually unlocking each quarter. The Circulating supply is 24.5 million AVAX with tokens gradually released each quater. The current market cap of AVAX is around $100 million.

Results

Avalanche’s AVAX with its fixed capped supply, deflationary pressure, very strong utility, potential to receive air drops and low market cap, means it scores ✅✅✅. Polkadot’s DOT also has very strong utility with the need for auctions to acquire parachain slots, but has no deflationary mechanisms, no fixed capped supply and already valued at $3.8 billion, therefore scores ✅✅. Cosmos’s ATOM token is only for the Cosmos Hub, of which there will be many hubs in the ecosystem and has very little utility currently. (this may improve once IBC is released and if Cosmos hub actually becomes the hub that people want to connect to and not something like Binance instead. There is no fixed capped supply and currently valued at $1.1 Billion, so scores ✅.
https://preview.redd.it/mels7myawpq51.png?width=1000&format=png&auto=webp&s=df9782e2c0a4c26b61e462746256bdf83b1fb906
All three are excellent projects and have similarities as well as many differences. Just to reiterate this article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions, you may have different criteria which is important to you, and score them differently. There won’t be one platform to rule them all however, with some uses cases better suited to one platform over another, and it’s not a zero-sum game. Blockchain is going to completely revolutionize industries and the Internet itself. The more projects researching and delivering breakthrough technology the better, each learning from each other and pushing each other to reach that goal earlier. The current market is a tiny speck of what’s in store in terms of value and adoption and it’s going to be exciting to watch it unfold.
https://preview.redd.it/dbb99egcwpq51.png?width=1388&format=png&auto=webp&s=aeb03127dc0dc74d0507328e899db1c7d7fc2879
For more information see the articles below (each with additional sources at the bottom of their articles)
Avalanche, a Revolutionary Consensus Engine and Platform. A Game Changer for Blockchain
Avalanche Consensus, The Biggest Breakthrough since Nakamoto
Cosmos — An Early In-Depth Analysis — Part One
Cosmos — An Early In-Depth Analysis — Part Two
Cosmos Hub ATOM Token and the commonly misunderstood staking tokens — Part Three
Polkadot — An Early In-Depth Analysis — Part One — Overview and Benefits
Polkadot — An Early In-Depth Analysis — Part Two — How Consensus Works
Polkadot — An Early In-Depth Analysis — Part Three — Limitations and Issues
submitted by xSeq22x to CryptoCurrency [link] [comments]

[OWL WATCH] Waiting for "IOTA TIME" 14;

Disclaimer: This is my editing, so there could be some errors, misunderstandings or exaggerations.
Waiting for "IOTA TIME " (an era where IOTA defines nearly everything in terms of the block-chain world)

niels12어제 오후 4:51
IOTA funds are public: https://thetangle.org/address/IDNAFP9FWWKYGNDMKGJWZD9GATGRPTJYTYHLKFNDEQSISPSETLZQOSPGOHC99LMPXDEHSH9XYHNVOLUBBQPCEGHYK9 But they have probably other sources of income, like funding by government etc. And maybe also other IOTA funds on other addresses. I don't know.
Balance: 59.68 Ti


David Sønstebø어제 오후 9:41
I wonder how many times an out of context 2 year old private DM has to be addressed. At the time IOTA was approaching stagnation due to the actions of primarily CFB**, thus since we both started Jinn together which lead to IOTA,** I tried repeatedly to talk sense into him. I.E. "If you are going to torpedo all progress, let's just sell it all and start from scratch, fuck it" It's a figure of speech, while trying to talk sense into someone who insists that 1 + 1 = 3.59 My tax records show when I last sold iotas. February of 2018. Now stop reading into private DMs, especially ones taken out of context and especially those leaked by someone who's proclaimed he is going to ruin IOTA and my life. You need to go back to school if you think there is anything to 'speculate' on there.


dom어제 오후 4:15
u/unsy we will release the condensed version of them once we want to. Just because you so desperately desire them for whatever reason doesn't make us do it faster. Being in this space for so fucking long, last thing I want is to attempt to act in good faith again and then be screwed over by those trying to misconstrue reality and spread lies. We've been at that for too long. Once they are fully ready, and we have them in a format we like, we will publish them.


dom어제 오후 4:16
Our objective of the finance / legal department is to become one of the most trustworthy / transparent organizations in this space. Which is why we're setting up new and stricter policies in general


dom어제 오후 4:18
quite frankly, with everything that has happened up until now, I would certainly say that we are one of the most transparent organization (if we wanted it or not) u/unsy


dom어제 오후 4:21
u/unsy I am not worried about it. If we have problems, we always solve them - I think we've proven that by now. And as it stands right now with our current funding + our strategy, we are in good hands


David Sønstebø오늘 오전 6:41
Don't worry, a shitty FUD piece in a cryptoblog is nada
[오전 6:41]
We were once numero uno target by Jeffrey Epstein funded Joi Ito's MIT DCI
[오전 6:41]
This is nothing


------------------------------------------------------------------------------------

Antonio Nardella [IF]어제 오후 11:13
IMO the community has matured a lot, we have community and certified developers working with the IF in the X-Teams, there are new people coming in with direct interest in the tech (yeah, also spec is still popular) and from the chats that I've had, there are devs waiting for the breaking changes of Chrysalis P2, before starting to develop again.. But that's my assessment..


Jelle Millenaar [IF]어제 오후 9:15
Well, I can say the DID developments are going smooth. Starting publishing the first DIDs to the Tangle ;D


Jelle Millenaar [IF]어제 오후 9:15
And since I am totally not biased towards Identity, but its gonna be revolutionary ;D


Jelle Millenaar [IF]어제 오후 10:06
This is the perfect time to loose faith in the IOTA Foundations capability to deliver, especially after the network just received a major update with many improvements. Its just crypto being crypto,


dom오늘 오전 2:12
Yeh we'll go through it. This is the usual game...


Dominik Schiener
There is more tech maturity, more adoption and more progress than ever. We are one of the only projects which gets funding from government grants and corporations. Stop the attention grabbing headlines and get your sources right.


Long field
You can track their iota address, and I can tell they didn't sell any iota tokens in last two months


HusQy
IOTA is like a large decentralized network cable that connects any number of nodes with each other and that enables data and values ​​to be exchanged with one another, whereby the data is protected against manipulation and the value transactions against double spends. Thereon ...

... you can run any decentralized application (we call this layer) - e.g. a blockchain that stores certain data for as long as you want and limits the amount of data to be saved via fees like Bitcoin. Each of these uses inherit ...

... your security from the basic protocol and can specifically only save the data that is relevant for you (also decentralized). To say that IOTA is not a DLT is in principle not that wrong - it is a platform for DLTs and therefore much more powerful than all ...

... existing DLTs because it is much more flexible. For example, you can run Hashgraph in IOTA, or Bitcoin or whatever. And IOTA is the token that connects the entire ecosystem. This is of course "not yet" the case, but Chrysalis Part 2 is the first step.​


HusQy
@blocktrainerperhaps this explanation will enable you to understand where the journey is going. If a decentralized data storage is required, then you can build it with IOTA and it then has exactly the same properties in terms of permanent storage as Bitcoin.


Block trainer
We can also get a little more technical. The way you describe it, it sounds like an interoperability layer ... something like that here, which then equates to a polkadot etc.
📷

HusQy
In principle yes, only that it doesn't connect Bitcoin and ETH but "IOTA Smart Contracts" with "IOTA Storage" etc. It is not there to connect other projects but to offer the same as other projects, only faster and cheaper.

-------------------------------------------------------------------------------

Bitcoin Coach
And in 5 years there will be a completely new project, which then claims to be better than IOTA. And then should all the infrastructure be thrown overboard and the partners simply change the DLT?


HusQy
This is how technology works. It makes no sense to run the Internet on the basis of 64k modems just because many people have one at home. The change does not take place overnight but creeping and if you look at the BTC Dominance you can see that too.

Ultimately, everything will switch to the best technology and we'll see which that is :)


Block trainer
The "best" must also be defined. What are the classes to master?


HusQy
All classes. If there is a technology that can represent even one aspect better, then it is not yet good enough. Blockchain, for example, is a "degenerate" DAG with only one reference. The goal is that IOTA can also use blockchains if the use case requires it.


HusQy
The future is not "either DAG or blockchain" but both seamlessly linked within the same ecosystem. IOTA smart contracts use a blockchain, for example, but a separate chain for each smart contract and the blockchain is within the tangle.

Block trainer
According to the new definition, they are no longer saved ... A doublespent could change the reference retrospectively.


HusQy
That's not quite true. The tangle itself contains all information for all eternity and you cannot remove any information. Once the data has reached a certain age, it is no longer stored by every node in the network. But you can still ...

... still prove what happened in the part of the tangle that was "forgotten" by the nodes after a certain time. Now there are two ways to keep this evidence: 1. You save the evidence personally and can present it at any time. 2. Man ...​​

... writes a plug-in for the node, which monitors the Tangle for information of a certain type and keeps a copy of all car purchase-related data forever (or for at least 30 years, for example). All dealerships could then install this plugin and ...

... jointly store this data decentrally in order to query the information if necessary. However, you would only selectively save the data that interests you. The evidence they produce can still be verified by any node on the network.​​

If the server of a car dealership fails, it can download the data again from one of the other dealerships. Quasi like an application-related private blockchain which is secured by the Tangle. It is also conceivable that there are service providers for this ...

----------------------------------------------------------------------------------


HusQy
Data is only kept immutable. How do you intend to execute a token transaction over pure data? I'm simply sending the following two data transactions at the same time: 1. I'm sending $ 100 from address A to address B. 2. I'm sending $ 100 from address A to address C.


HusQy
In order to determine which transaction is successful / came first, you need consensus. Data transactions do not allow token transfer.


Block trainer
Why doesn't that allow token transfer? I can simply use it to sign my values. The question is about the meaning of the token. I can also sign that I have transferred € 10 for the petrol station. Or I transmit the proof via curled BTC ...


HusQy
Did I just describe you can publish two conflicting data transactions and no one knows which is the correct one: P


Block trainer
Unless you agree on a consensus. Time stamp + BTC (locked) in hash = value transmitted ... What else is the IOTA token for?


HusQy
Whether information is correct can only be seen in the context. Take a look at the difference between "data" and "information". For example, you can claim that you locked Bitcoin even though it didn't.


Block trainer
I may need a proof of this. See how, for example, BTC is unlocked in liquid or in the LN. The IOTA data layer is extremely similar to the principle of Lightning. Accordingly, the sending of tokens would be possible here, which means that I see the use case of the IOTA coin at risk


HusQy
Such a proof is impossible. The reason why this works with LN nodes is because LN nodes are Bitcoin nodes that know what is happening in the Bitcoin network and have "information" and not just "data": P What you are describing is technically impossible.


Block trainer
Data = information What can the LN not, what IOTA can sometimes?


HusQy
That's not rubbish. There is a huge difference between data and information, and inter-chain transactions are not possible because of that very difference. LN won't work - there are too many game theory problems: P​

--------------------------------------------------------------------------------------------

Dominik Schiener
There is more tech maturity, more adoption and more progress than ever. We are one of the only projects which gets funding from government grants and corporations. Stop the attention grabbing headlines and get your sources right.


Dominik Schiener
As an innovation leader in Europe, I certainly say we deserve to get grants. There is a below 7% success chance usually. And yes, everything is fully audited (by externals ofc), showing clearly how and that the money was used in achieving the milestones of the grant.

----------------------------------------------------------------------------------------------------------------------------------
submitted by btlkhs to Iota [link] [comments]

YouTube Nodes in Blockchain - YouTube Bitcoins Erklärung: In nur 12 Min. Bitcoin verstehen ... What is a Bitcoin Node? - Step by Step Explanation - YouTube BEST MINING-BITCOIN HACK 2019

Running a full node is the only way you can use Bitcoin in a trustless way. You will know for sure that all the rules of Bitcoin are being followed, for example that no bitcoins are spent not belonging to the owner, that no coins were spent twice, that no inflation happens outside of the schedule and that all the rules needed to make the system work (e.g. difficulty ) are followed. The definition of a node may vary according to the context. When it comes to computer or telecommunication networks, nodes may act either as a redistribution point or as a communication endpoint. Usually, a node consists of a physical network device, but there are some cases where virtual nodes are used. A network node is a point where a message can be created, received, or transmitted. Hereby ... Definition und Erklärung. Wenn heute von digitalen Geschäftsmodellen die Rede ist, taucht oft der Begriff „Blockchain“ auf. Manche verbinden damit die nächste digitale Revolution - ähnlich ... Was ist eine Bitcoin Node und warum sollte man eine betreiben? Blockchain Nodes - Definition und Funktionsweise von Nodes. Blockchain Node - Lightweight und Full Nodes. So funktioniert die Blockchain. Binance Research: Ethereum-Wechsel auf Staking verändert Branche. DISCLAIMER Dieser Artikel stellt weder eine Anlageberatung noch ein Angebot oder eine Aufforderung zum Kauf von Krypto-Assets ... Bitcoin ist also nur ein möglicher Anwendungsfall der Blockchain-Technologie, ... Ein Node ist ein Computer, welcher mit dem Blockchain-Netzwerk verbunden ist und mittels einer entsprechenden Software (dem Client) Transaktionen des Blockchain-Netzwerks prüfen und übermitteln kann. Die Nodes erhalten eine Kopie der Blockchain, welche automatisch bei der Verbindung mit dem Blockchain-Netzwerk ...

[index] [8082] [22349] [35981] [28101] [47777] [22909] [45405] [33590] [21639] [22166]

YouTube

https://www.blockchain.com/charts/blocks-size In this video we will discuss: Nodes in blockchain Full node Partial node Miners #blockchain #nodes in blockcha... Bitcoin für Anfänger einfach erklärt! [auf Deutsch] Bitcoin-Börse (erhalte 10€ in BTC) https://finanzfluss.de/go/bitcoin-boerse *📱 Sicheres Bitcoin-Wallet... Start trading Bitcoin and cryptocurrency here: http://bit.ly/2Vptr2X Bitcoin is the first decentralized digital currency. All Bitcoin transactions are docume... i do not participate in paid reviews or promotions. if you have been approached by someone on telegram claiming to be a part of the crypto tips team, they ar... bitcoin definition bitcoin depot bitcoin difficulty bitcoin dominance bitcoin debit card bitcoin drop bitcoin death cross bitcoin documentary bitcoin diamond bitcoin dominance chart bitcoin d.a.v ...

#